The Interdisciplinary Resource  
  Subscribe
Login
 
 
     
Search  
Sort by:
Results Listed:
Date Range:
  Advanced Search
 
The World & I eLibrary

Teacher's Corner

World Gallery

Global Culture Studies (at homepage)

 
 
Social Studies

Language Arts

Science


The Arts

Spanish
 
 
Crossword Puzzle
 
 
American Indian Heritage
American Waves
Biographies
Ceremonies/Festivities
Diversity in America
Eye on the High Court
Fathers of Faith
Footsteps of Lincoln
Genes & Biotechnology
Impacts
Media in Review
Millennial Moments
Peoples of the World
Poetry
Point/Counterpoint
Profiles in Character
Science and Spirituality
Shedding Light on Islam
Speech & Debate
The Civil War
The U.S. Constitution
Traveling the Globe
Worldwide Folktales
World of Nature
Writers & Writing

 
  Issue Date: 12 / 2017  
 

Fighting a Giant Foe at a Tiny Scale



Julie Barr
 

MIT Professor Paula Hammond Photo courtesy of MIT Alumni Association Click image to enlarge.


       Paula Hammond’s research focuses on using nanoscale biomaterials to attack cancer, which she calls “a supervillain with incredible superpowers.” Using targeted nanoparticles, she is attempting to turn off the natural defenses of mutant genes and deliver a deadly punch to the cancer cell. Her work will soon be translated into clinical practice through partnerships with pharmaceutical companies, entrepreneurial partners, and startups in health care.
       
       Long interested in reading and the arts, Hammond ’84, PhD ’93 considered writing children’s novels before she decided to study chemical engineering as an undergraduate at MIT. After working at Motorola for two years, she earned her master’s degree at Georgia Tech and then returned to MIT for a new PhD program in polymer science. In 1995 Hammond joined the MIT faculty, where she is now the David H. Koch Professor of Engineering and head of the Department of Chemical Engineering.
       
       During her 2003 sabbatical, she began to focus on biomaterials. As someone entering that field in mid-career, she says, “I brought a new perspective, with a materials design approach.
       
       Since then, she has merged design and polymer engineering to create breakthroughs in drug delivery technology. By layering negatively and positively charged molecules, Hammond and her team can create coated meshes and wound dressings that gradually release combinations of an antibiotic and a growth factor to help the wound heal, support bone regeneration, or control the scarring that can result from a burn or tissue injury.
       
       This same layering concept is used to treat cancer, says Hammond. By taking a nanoparticle core loaded with drugs that kill cancer cells, surrounding that core with layers that contain silencing RNA to turn off the genes that promote cancer survival, and adding a final outer layer that helps the nanoparticle reach the tumor, it is possible to target drug-resistant cancer cells.
       
       During her 2015 presentation for the live show "TED Talks: Science and Wonder," Hammond said that, using molecular engineering, “we can actually design a superweapon that can travel through the bloodstream. It has to be tiny enough to get through the bloodstream, it has got to be small enough to penetrate the tumor tissue, and it’s got to be tiny enough to be taken up inside the cancer cell. To do this job well, it has to be about one one-thousandth the size of a human hair.”
       
       Hammond was elected to the National Academy of Engineering in 2017 and the National Academy of Medicine in 2016. She is also a member of the American Academy of Arts and Sciences
       
       Copyright MIT News, 2017



MIT Alumni Associate.
 
About Us | Contact Us | FAQ | Terms of Use | Privacy Policy

Copyright © 2017 The World & I Online. All rights reserved.